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a b s t r a c t

Several rheological constitutive equations for the modeling of dense suspensions in nonlinear shear flows
have been developed over the last three decades. Although these models have been able to predict the
correct steady-state solid-phase concentration profile, none have been able to follow the transient exper-
imentally measured concentration profile over a range of suspended particle radii with a consistent set of
diffusion coefficients. In this research, two improvements are made to the diffusive-flux model, namely,
modeling the diffusion coefficients as linear functions of the so-called nonlinearity parameter and adding
slip boundary conditions at the wall. A particle-level explanation for the linear dependence of the diffu-
sion coefficients on the nonlinearity parameter is provided. With these two improvements, it is shown
that the modified diffusive flux model can accurately predict the transient solid-phase concentration pro-
file in a Couette device over a wide range of particle radii.

Published by Elsevier Ltd.
1. Introduction

Particle migration in suspension flows is important in a variety
of scientific and engineering applications such as the transport of
sediments, chromatography, composite materials processing, sec-
ondary oil recovery techniques, and sequestration processes in
porous media to name a few. In particular, initially well mixed
neutrally-buoyant particles in concentrated nonlinear suspension
flows have been shown to undergo migration from high shear rate
regions to low shear rate regions. For example, in a Couette device
with rotating inner cylinder and stationary outer cylinder, the par-
ticles migrate towards the outer cylinder (Abbott et al., 1991, 1994,
2005), and in Poiseuille flows in conduits, the particles migrate to-
wards the centerline of the conduits (Koh et al., 1993, 1997).

Several rheological models have been proposed to study sus-
pension flows. Phillips et al. (1992) used the scaling arguments
of Leighton and Acrivos (1987) to develop the so-called diffusive
flux model. In this model, particle migration results from gradients
in the shear rate, concentration and relative suspension viscosity.
This model was refined by Fang et al. (2002) to account for the dif-
ferent rates of migration in the shear plane as opposed to the vor-
ticity plane. In an alternative modeling approach based on the
conservation laws of mass and momentum designated as the sus-
pension balance model, the stress in the particle phase is described
by a constitutive equation, and particle transport is driven by gra-
Ltd.
dients in this stress (Jenkins and McTigue (1990, 1994, 1998)). The
suspension balance model has been refined by Morris and Boulay
(1999),Fang et al. (2002) and Shapley et al. (2004) to account for
nonisotropic migration rates and to improve the modeling of par-
ticle velocity fluctuations. Additional rheological models based on
mixture theory have been proposed by Buyevich (1995) and Pozar-
nik and Skerget (2003).

The models discussed above can satisfactorily describe the stea-
dy-state concentration profiles achieved in suspension flows; how-
ever, all of the models proposed to date show large discrepancies
for transient concentration profiles with experimental data. In par-
ticular, these models predict that particle migration should scale
with the radius of the particle squared. Unfortunately, the experi-
mental data (Abbott et al., 1991, 1998, 2003) do not support this
scaling, and hence, none of the models can be used to reliably pre-
dict transient concentration profiles. For example, experimental
data for a wide-gap Couette device show that the migration rate
should scale with the particle radius raised to anywhere from the
2.6 to 2.9 power.

In a recent study, Ingber et al. (2008) determined that a rough
pair of interacting spheres in a nonlinear shear flow will migrate
towards the low shear rate region of the flow field. Further, they
found that the magnitude of the displacement of the center of
gravity of the particle pair towards the low shear rate region scales
linearly with the nonlinearity parameter, nnl ¼ ajr _cj=ð _cþ _cNLÞ
where a is the particle radius, _c is the local shear rate, and _cNL is
the so-called nonlocal contribution to the shear rate as discussed
in Section 3. This migration leads to a migration diffusivity which
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also is a function of the nnl. Based on these results, it can be conjec-
tured that the diffusion coefficients in the diffusive flux model
should also be linear functions of the nnl.

In this research, two modifications are made to the diffusive
flux model. First, the diffusion coefficients are modeled as linear
functions of the nonlinearity parameter. However, this modifica-
tion in itself leads to essentially cubic scaling of migration on the
particle radius which is somewhat larger than found in experi-
ment. To reduce the scaling to match experimental results in the
wide-gap Couette, velocity slip boundary conditions are imposed
at the wall. It is shown that, with these two modifications, it is pos-
sible to match experimental results with model predictions using a
consistent set of model diffusion coefficients over a wide range of
particle radii.

2. The diffusive-flux model

The multiphase systems considered are solid particles sus-
pended in a Newtonian fluid. For neutrally-buoyant particles, the
balance equations for an incompressible suspension are given by

r � us ¼ 0 ð1Þ
Dqus

Dt
¼ r � r

�
ð2Þ

where

D
Dt
¼ @

@t
þ us � r ð3Þ

is the substantial derivative and us is the suspension velocity. The
suspension stress tensor r

�
is given by

r
�
¼ �p d

�
þ2gð/ÞD

�
ð4Þ

where p is the suspension pressure, / is the volume fraction of sol-
ids in the suspension, gð/Þ is the effective suspension viscosity, D

�
is

the suspension deformation rate tensor, and d
�

is the Kronecker-d
function.

The effective suspension viscosity is modeled using the Krieger
correlation. That is, g ¼ grgs where gs is the solvent viscosity and
gr is the relative viscosity given by

gr ¼ 1� /
/m

� ��a

ð5Þ

where /m is the maximum solid volume fraction for which the sus-
pension exhibits fluid behavior. The value of /m depends on several
factors as discussed by Subia et al. (1998). In this research, /m is
chosen to be 0.68 and a is chosen to be 1.82.

The concentration evolution equation is given by

D/
Dt
¼ �r � N ð6Þ

in which N has two contributions, one due to interparticle hydrody-
namic interactions, Nc, and one due to spatial variations in viscosity,
Ng.

To account for the nonisotropic behavior of the particle flux at a
point, two fluxes are reformulated based on a flow-aligned tensor,
Q, written in terms of shear-axis coordinates d1, d2, and d3 (Fang
et al., 2002). The shear axes are based on the shear surfaces moving
with the ambient flow. At any time, d1 and d3 are tangent to the
shearing surface. In particular, d1 is in the direction of the stream-
line and d3 is in the direction of the velocity gradient. In this coor-
dinate system, the flow-aligned tensor Q is given by

Q ¼
k1 0 0
0 k2 0
0 0 k3

0
B@

1
CA ð7Þ
The two particle flux terms are then modeled as

Nc ¼ �Kca2/r � ð _c/Q Þ ð8Þ

and

Ng ¼ �Kga2/ð _c/Q Þ � r lng ð9Þ

In order to achieve the correct concentration profiles in a parallel
plate and cone and plate geometry, it was determined that
k1 ¼ k2 ¼ 2k3 (Fang et al., 2002).

However, in the circular Couette flow geometry, the diffusive
flux equation reduces to its original form given by Phillips et al.
(1992). That is

@/
@t
¼ a2

r
@

@r
r Kc /2 @ _c

@r
þ / _c

@/
@r

� �
þ Kgð _c/2Þ 1

g
dg
d/

@/
@r

� �� �
ð10Þ
3. Motivation for modifications to the diffusive flux model

As seen in Eqs. (6), (8) and (9) or Eq. (10), the migration rate of
the classical diffusive flux model scales quadratically with the par-
ticle radius, a. One of the modifications implemented in this re-
search is to make the diffusion coefficients, Kc and Kg, linear
functions of the nonlinearity parameter, nnl, given by

nnl ¼
ajr _cj
_cþ _cNL

ð11Þ

where _cNL is the so-called nonlocal contribution to the shear rate. As
discussed by Miller et al. (2006), a small constant nonlocal contribu-
tion is added to the local shear rate to take into account the fact that
the RMS of _c is larger than the mean shear rate resulting from the
finite size of the spheres. In this research, the nonlocal shear rate
is modeled as

_cNL ¼
a
Ro

_co ð12Þ

where Ro is the outer radius of the Couette and _co is the shear rate at
the outer edge of the Couette. The nonlocal shear rate plays a small
role in the Couette flow considered here, but can have a large influ-
ence for other flow fields such as Poiseuille flows.

The motivation for this modification comes from considering
two-sphere interactions in a Couette flow field. In previous re-
search, Ingber et al. (2008) determined, using a traction-corrected
boundary element method (TC-BEM), that there is a net displace-
ment of the center of gravity of a pair of rough spheres interacting
in a quadratic flow towards the low shear rate region of the flow
field. Further, they determined that the magnitude of this net dis-
placement scaled linearly with the nonlinearity parameter. In a
sense, nnl describes the degree of nonlinearity of the flow field
experienced by the spheres at various locations within the flow.
The TC-BEM simulations are repeated here for circular Couette
flow. In particular, the far field circumferential velocity profile is gi-
ven by

uh ¼ cr=2þ d=r ð13Þ

where uh is the circumferential velocity, c = �2/3 and d = 1323,
which corresponds to a Couette device of inner diameter of 31.50
and outer diameter of 62.99. Note that no physical walls are in-
cluded in the simulations. The two spheres of radius 1 are initially
placed at the locations ri

1; h
i
1 and ri

2; h
i
2 where r is the radial distance

measured from the center of the Couette and h is the polar angle
measured from the positive x-axis as shown in Table 1. The spheres
have a roughness, d, given by d=a ¼ 0:01. The roughness model is
implemented by restricting the relative normal motion of the two
spheres when they reach a separation of d (Ingber et al., 2008).
The initial angle that the lines generated from the center of the Cou-
ette to the centers of the two spheres make with each other is 45�.



Table 1
Simulation results for two rough spheres in circular Couette flow.

ri
1,hi

1 ri
2,hi

2 ri
ave NLP rf

1,hf
1 rf

2,hf
2 rf

ave

30.200,�0.7854 30.500,0.000 30.35 0.0659 29.829,�1.716 30.905,�2.512 30.367
32.700,�0.7854 33.000,0.000 32.85 0.0609 32.330,�0.840 33.402,�1.623 32.866
35.200,�0.7854 35.500,0.000 35.350 0.0566 34.827, �0.500 35.901,�1.281 35.364
37.700,�0.7854 38.000,0.000 37.850 0.0528 37.342,�0.729 38.384,�1.515 37.863
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The inner cylinder of the Couette is rotated causing the inner sphere
to interact with and overtake the outer sphere. The simulation is
continued until the angle that the lines generate from the center
of the Couette to the centers of the two spheres is once again 45�
whence the simulation is stopped. Also shown in Table 1 are the ini-
tial average radial position of the two spheres ri

ave, the correspond-
ing value of the nonlinearity parameter, nnl, at that radial position,
the final positions of two spheres rf

1,hf
1 and rf

2,hf
2, and the final aver-

age radial position of the two spheres rf
ave. The difference between

the final average radial position of the two spheres and the initial
average radial position of the two spheres represents the net per-
manent displacement of the center of gravity of the particle pair,
Drcg . This net permanent displacement as a function of the nnl is
shown in Fig. 1. As seen in the figure similar to the result for qua-
dratic flow (Ingber et al., 2008), the net permanent displacement
of the particle pair scales essentially linearly with the nonlinearity
parameter.

Although the above simulations were performed for an isolated
rough particle pair in Couette flow, they do provide evidence that
the net migration induced by particle interactions in dense suspen-
sions should also be functions of the nonlinearity parameter. Fur-
ther, based on the linear relationship shown in Fig. 1, it is not
unreasonable to presume a linear relationship between the diffu-
sion coefficients in the diffusive flux model and the nonlinearity
parameter.

4. Modifications to the diffusive flux model

Two modifications to the diffusive flux model are implemented
in this research. As discussed above, the first modification is to
make the diffusion coefficient, Kc, a linear function of the nonlin-
earity parameter, nnl. That is, Kc is modeled as
NLP

Δr
cg

/a

0.054 0.056 0.058 0.06 0.062 0.064

0.014

0.015

0.016

0.017

Fig. 1. The net parameter displacement of a particle pair Drcg as a function of the
nonlinearity parameter, nnl for a roughness d=a ¼ 0:01.
Kc ¼ jnnl ¼ j
ajr _cj
_cþ _cNL

ð14Þ

where j is a modeling parameter to be determined by comparing
model predictions with experimental data. The ratio of the diffusion
coefficients Kc=Kg is given by the ensemble local model proposed by
Tetlow et al. (1998). That is,

Kc=Kg ¼ rk/ ð15Þ

where the proportionality constant rk is chosen to best match stea-
dy-state results for the Couette device for a given bulk concentra-
tion, �/. Hence, Kg is also a linear function of the nonlinearity
parameter.

The second modification to the diffusive flux model is the adop-
tion of a slip velocity boundary condition. The velocity field us is
the volume-averaged suspension velocity over the fluid and solid
phases. Because the particles cannot physically occupy the space
adjacent to a wall as effectively as in the bulk of the fluid, an
‘‘apparent slip layer” which is essentially devoid of particles forms
next to the wall (Kalyon, 2005). This slip layer has a greatly re-
duced effective viscosity compared to the bulk suspension and re-
sults in an ‘‘apparent slip velocity” at the wall (Soltani and
Yilmazer, 1998). This slip velocity has been measured experimen-
tally by Jana et al. (1995), Soltani and Yilmazer (1998), Gulmus and
Yilmazer (2005) and Mondy et al. (2005). In general, these
researchers found that the effective slip increased with particle
size and concentration. The slip boundary condition is given by

baT � n ¼ gsðup � ufÞ � t ð16Þ

where T is the traction on the solid boundary wall, n and t are the
normal and tangential unit vectors to the wall, respectively, up and
uf are the particle phase and fluid phase velocities, respectively, and
b is the non-dimensional slip coefficient. In general, b is a function
which increases monotonically with particle diameter and solid-
phase concentration. When b ¼ 0, there is no slip on the wall, and
when b ¼ 1, there is perfect slip.

The suspension phase velocity is given by

us ¼ ð1� /Þuf þ /up ð17Þ

Substituting Eq. (17) into Eq. (16) and noting that all velocities must
be tangent to the wall yields

ut
s ¼ ut

f þ
a/b
gs

T � n ¼ ut
b þ a/grb _c ð18Þ

where ut
s is the tangential component of us, ut

f is the tangential com-
ponent of uf , ut

b is the tangential component of the boundary which
is the same as ut

f because of the no-slip fluid boundary condition.
For future reference to the results of Jana et al. (1995), it should

be noted that they defined their slip coefficient, bo, as

ut
s ¼ ut

b þ abo _c ð19Þ

Hence,

bo ¼ /grb ð20Þ

The diffusive flux equation, Eq. (10), subject to the slip boundary
condition, Eq. (18), is solved using a standard foward-time, cen-
tral-space (FTCS) finite difference method. Since the method is
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experimental data for the difference measure as a function of the model parameter
j at a value of the scaling exponent n = 2.8.
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explicit, the nonlinearity parameter, nnl, which is a function of the
local shear rate and shear rate gradient, can be evaluated from
the previous time step. Appropriate convergence tests have been
performed to assure the quality of the numerical results.

5. Model tuning and results

The tuning of the modified diffusive flux model is performed by
comparing model predictions to a series of experiments performed
in a wide-gap Couette device. Details of the experiments are de-
scribed by Tetlow (1997) and Hsiao et al. (2005). To nondimension-
alize the governing equations, the outer radius of the Couette
apparatus, Ro, is taken as the length scale, xRo is taken as the veloc-
ity scale, where x is the inner cylinder angular rotation rate, and
1=x is taken as the time scale. To match experimental results,
the inner cylinder radius Ri is given by Ri=Ro ¼ 0:25.

There are several adjustable (tuning) parameters in the diffusive
flux model. The model is tuned here to best match the experimen-
tal results at a bulk concentration of �/ ¼ 50%. The parameters /m

and a used in the Krieger (1972) model for the suspension viscosity
are chosen based on rheometric viscosity data as discussed in Sec-
tion 3. The rk in Eq. (15) for the ratio of the diffusion coefficients
Kc=Kg is taken as a function of the bulk concentration �/ and is cho-
sen so that diffusive flux model best matches steady state experi-
mental data. For the case �/ ¼ 50%, rk ¼ 1:5 (Tetlow et al. (1998)).

The determination of j in Eq. (14) and the slip coefficient b in
Eq. (16) is more involved. The determination of j is performed
first. However, this is problematic in the sense that without the
knowledge of b, it is impossible to determine j since increasing
slip at the wall decreases the rate of particle migration. Fortu-
nately, the slip coefficient b has been determined experimentally
for very similar conditions by Jana et al. (1995). The determination
of b will be deferred to later.

To determine the parameter j, simulations are performed for
sphere size given by a=Ro ¼ 2:10� 10�3 corresponding to 50 lm
spheres at a bulk concentration of �/ ¼ 50% for which b ¼ 1=4 (Jana
et al., 1995). It is presumed that the rate of particle migration
scales as ða=aref Þn where aref is an arbitrary reference sphere radius
as discussed by Tetlow et al. (1998) and Hsiao et al. (2003). In order
to determine the optimum j, it is necessary to simultaneously
determine the optimum scaling exponent n. First, optimization is
performed to determine the best j for a presumed value of n,
and second, optimization is performed to determine the best scal-
ing exponent n with its associated j.

The optimization is performed using the so-called difference
measure, DM, defined by

DM ¼ 2
R2

o � R2
i

Z Ro

Ri

j/ðrÞ � �/jrdr ð21Þ

where / is the circumferentially averaged solid-phase concentra-
tion and �/ is the bulk concentration of the suspension. That is,
the difference measure DM represents the degree to which the tran-
sient concentration profile within the Couette apparatus has de-
parted from the initial uniform concentration profile. The
difference measure is taken to be a function of the effective strain,
Se, defined by

Se ¼ Ni
a

a50

� �n

ð22Þ

where Ni is the number of revolutions of the inner cylinder and a50

is the arbitrary reference radius of 50 microns.
The optimum value for j at a presumed value of the scaling

exponent n can be determined by computing the least-squares er-
ror between the modified diffusive flux model and 23 discrete
experimental data points for the difference measure generated
with 64, 328, 800, and 1588 lm particles. A plot of this least-
squares error as a function of j for n = 2.8 is shown in Fig. 2. Once
the minimum least-squares error is determined for each n, this lo-
cal minimum can be plotted as a function of n as shown in Fig. 3. It
is seen in the figure that the minimum least-squares error occurs at
a value of the scaling exponent given by n = 2.8.

It is interesting to note that Tetlow et al. (1998) determined an
optimum scaling exponent of n = 2.9 based on the same experi-
mental data. However, Tetlow et al. performed their optimization
based on a statistical predictive model which was an exponential
curve fit to the experimental data. In particular, their predictive
model never approached a steady state, and hence, data at large
values of effective strain were not approximated particularly well.
Based on this analysis, the global optimal value of j can be deter-
mined from Fig. 2 and is given by j ¼ 4:7.

The actual comparison between the experimental data and the
numerical prediction of the modified diffusive flux model with
optimized j and n is shown in Fig. 4. As seen in the figure, the
numerical predictions model the data quite well over a range of
particle radii spanning from 50 to 1588 lm.

The numerical curve in Fig. 4 was generated for one size sphere
only characterized by a=Ro ¼ 2:10� 10�3 corresponding to a 50
micron radius. It has yet to be shown that the modified diffusive
flux can be used over a range of sphere radii. If no slip boundary
conditions are imposed, it can be shown that the modified diffusive
flux model would predict a particle migration scaling with the cube
of the sphere radius, i.e., n = 3 which contradicts the experimental
data as discussed above.

For suspensions containing spheres of larger radii, the slip
parameter b is adjusted using the bisection method so that the dif-
ference measure reaches a value of 0.07 at the same effective strain
as was the case for the 50 lm spheres. Choosing the value of the
difference measure of 0.07 is somewhat arbitrary but did collapse
the curves for the various radii considered quite nicely as seen in
Fig. 5. The model correctly predicts the migration rate for particles
of essentially any radius, if one adjusts the slip parameter, b, is ad-
justed appropriately. The values of b used to get the agreement
shown in Fig. 5 is shown in Fig. 6. Although there are no known
measurements for the slip coefficient for the larger-sized spheres,
the results are at least qualitatively reasonable as the slip will in-
crease with sphere diameter. A comparison between the modified
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diffusive flux model predictions and experiment for the actual con-
centration profiles for the case of 64 lm spheres is shown in Fig. 7
at 200, 2000, and 8000 revolutions of the inner cylinder. Also
shown in Fig. 7 is the steady-state concentration profile predicted
by the modified diffusive flux model.

As discussed above, the modified diffusive flux model has been
tuned to match experimental Couette data at a bulk solids concen-
tration of 50%. Experimental data also exists for bulk solids concen-
trations of 35% and 42.5% (Hsiao et al., 2005). This tuned diffusive-
flux model is compared to these two additional data sets in Figs. 8
and 9. Two changes are made to the modified diffusive flux model
for the new data sets. First, the parameter rk from the ensemble lo-
cal model of Kc=Kg is taken from the optimized values to best rep-
licate the steady state profile as determined by Tetlow et al. (1998).
In particular, for �/ ¼ 42:5%, rk ¼ 1:35, and for �/ ¼ 35%, rk ¼ 1:25.
Second, the scaling parameter n is taken from the results of Hsiao
et al. (2005). In particular, for / ¼ 42:5%, n = 2.7, and for �/ ¼ 35%,
n = 2.6. In both figures, the model result was determined using
50 lm spheres, and again, for the given scaling parameter n, model
curves for spheres of different diameters could be essentially col-
lapsed by adjusting the wall slip parameter. As seen in the figures,
the model prediction for migration is somewhat slower than seen
experimentally. This could be adjusted using the parameter j. Nev-
ertheless, the agreement between experiment and model predic-
tions is relatively good.

6. Discussion

Rheological models for concentrated suspension flows have
been investigated for the last 30 years. Although these models have
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been successful in predicting steady-state concentration profiles,
they have been inadequate in predicting transient concentration
profiles over a range of particle sizes. The central outstanding issue
with these models for transient analysis is that the models all pre-
dict the migration rate to scale with the suspended particle radius
squared. Unfortunately, this scaling simply has not been observed
in wide-gap Couette experiments.

Two modifications to the diffusive flux model have been imple-
mented to overcome the model’s shortcomings. First, the diffusion
coefficients have been made linear functions of the so-called non-
linearity parameter. This modification is motivated by considering
the interaction of two spheres in circular Couette flow. Numerical
simulations are performed using a traction-corrected boundary
element method showing that the net displacement of the center
of gravity of a rough pair of interacting spheres towards the low-
shear-rate region of the flow field scales linearly with the nonlin-
earity parameter. These simulations imply that the net migration
of a particle pair towards the low-shear-rate region of the flow
field during a single interaction in a dense suspension should also
depend on the local nonlinearity parameter. However, this modifi-
cation by itself results in the migration rate of dense suspensions
scaling with the particle radius cubed which is faster than ob-
served experimentally. The second modification to the model is
to introduce slip boundary conditions at the wall to enable the
scaling of migration on particle radius to match experimental
observation.

Model parameters of the modified diffusive flux model have
been tuned so that the model predictions best match experiment.
In particular, the original Krieger model for the relative viscosity
and linear ensemble local model for the ratio of the two diffusion
coefficients have been retained from previous research. In this re-
search, a global search is performed to determine the optimal dif-
fusion model parameter j and scaling exponent n which is
accomplished by performing a least squares error analysis between
model predictions and experimental data at a bulk concentration
of 50% in which the model predictions are performed using
50 lm spheres. This size suspended particle was chosen for the
optimizations because it best matched the conditions under which
Jana et al. (1995) measured the slip coefficient.

This approach for determining the scaling parameter n is differ-
ent than previous work in that the least squares average is taken
between model predictions for difference measure and experiment
as opposed to using a statistical predictive measure. The advantage
of the current approach is that the model prediction attains a stea-
dy state whereas the predictive measure does not. The comparison
between the tuned modified diffusive flux model using 50 lm
spheres and experiment was quite good over the entire range of
sphere radii used in the experiments. However, in order for the
model predictions to scale with themselves at the optimal scaling
parameter of n = 2.8, the slip coefficient had to be appropriately ad-
justed. Although there are no known experimental measurements
for the slip coefficient for larger size spheres, the results of this
analysis are certainly reasonable as the slip coefficient increased
with sphere radius which is consistent with previous research.

The modified diffusive flux model was also compared to data ta-
ken at bulk concentrations of 42.5 and 35%. Although the parame-
ters for the ratio of the diffusion coefficients rk and scaling
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parameter n were taken from previous research, no effort was
made to readjust the diffusion coefficient, j. The comparisons be-
tween experiment and model predictions were fairly good despite
this lack of tuning. It certainly would be possible to perform opti-
mizations over the ensemble of experimental data rather than just
the results at bulk concentration of 50%.

To assess the significance of the modifications to the diffusive
flux model, consider the following comparison to the original diffu-
sive flux model. The experimental data indicates, for a 50% bulk so-
lid concentration, that the 1588 lm spheres reach a steady-state
concentration profile in approximately 400 revolutions of the inner
cylinder. This corresponds to an effective strain of approximately
3,200,000 based on the optimal scaling parameter of n = 2.8. How-
ever, using a scaling parameter of n = 2.0 as implicit in the original
diffusive flux model, the original diffusive flux model would pre-
dict that on the order of 5200 revolutions would be required for
the suspension containing 1588 lm spheres to reach steady state
representing an error of over 1000%! On the other hand, the mod-
ified diffusive flux model is constructed to reproduce the experi-
mental result.

Although the modifications discussed in this research were only
incorporated into the diffusive flux model, they could equally well
be applied to the suspension balance model. In fact, the results of
Fang et al. (2002), actually infer the same linear relationship be-
tween particle radius and diffusion coefficient as they determined
a different diffusion coefficient for each bulk concentration
considered.

Finally, this modifications to the diffusive flux model has only
been tested for the wide-gap Couette apparatus. Experimental re-
sults for pipe and channel flow are quite different (Hampton
et al., 1997, 1993) where it has been reported that the scaling of
the migration rate with particle diameter is sub-quadratic! How-
ever, this contrasting result may be explained by the nonlocal part
of the shear rate, _cNL. For these Poiseuille flows, as the local shear
rate goes to zero near the centerline, the nonlocal shear rate be-
comes more and more dominant compared to the local shear rate
in determining the nonlinearity parameter. In these regions, the a
in _cNL cancels the a in the numerator of the nonlinearity parameter,
nnl, restoring the a2 scaling. That is, shear-rate averaging effects
across the suspended particle may reduce the scaling rate of migra-
tion in regions where the shear rate approaches zero. This is the to-
pic of current research by our group.
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